If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3600t^2-60t=0
a = 3600; b = -60; c = 0;
Δ = b2-4ac
Δ = -602-4·3600·0
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-60}{2*3600}=\frac{0}{7200} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+60}{2*3600}=\frac{120}{7200} =1/60 $
| -4x-18=-16 | | n(n-3)=27×2 | | 36/42=24/n | | -0.666666666666x+5=-x+7 | | 6x-10=2x-6 | | 3x2-5x-100=0 | | 7+x-15=2(2/3) | | 4x+27+9x−115=107 | | -10v+9=-3-7v | | 5x2-10x-40=0 | | y-4-20=-12 | | 7=1-5p+6 | | -3(x-4)-(-3x+1)=2x-2x | | 2b2-8=0 | | 12x2-16x=16 | | -4y-4=-12 | | -2x+41=3x+6 | | -10v+9=-4-7v | | n2-11n-12=0 | | b/5+4/5=7/4 | | n2+4n-96=0 | | 3c-7=56 | | 5-2x-4=3x-12 | | 0.99t+72=1.79t | | -2/3x+5=-x+7 | | 2+4/x=7/12x | | 2x-4=2x-2x | | 3x+4+8x−28=180 | | 0.99t72=1.79t | | 3=p-3+4 | | 10-x=0.04-0.444 | | 7p-5=-7p+9 |